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In previous lectures we considered the maximum principle for homogeneous equations. We will
now consider supremum estimates in the case of inhomogeneous equations.

Theorem 1. Let Ω be a bounded domain in Rn. Suppose u ∈ C0(Ω) ∩ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu ≥ f in Ω

for some functions aij, bi, c, and f on Ω. Suppose L is an elliptic operator,

β = sup
Ω

|bi|
λ

<∞,

and c ≤ 0 in Ω. Then

sup
Ω
u ≤ sup

∂Ω
u+ + C sup

Ω

|f−|
λ

for C = e(β+1)d − 1, where d = diam Ω and f− = max{−f, 0}. Note that if Lu = f in Ω, we have

sup
Ω
|u| ≤ sup

∂Ω
|u|+ C sup

Ω

|f |
λ

for C = e(β+1)d − 1.

Proof. Without loss of generality let Ω lie between the slab 0 < x1 < d. Set L0 = aijDij + biDi.
Let

v = sup
∂Ω

u+ + (eαd − eαx1) sup
|f−|
λ
,

where α ≥ β + 1. We claim that Lu ≥ f ≥ Lv in Ω, in which case we can apply the comparison
principle using the fact that u ≤ v on ∂Ω to conclude that u ≤ v on Ω. For α ≥ β + 1 we have

L0e
αx1 = (α2a11 + αb1)eαx1 ≥ λ(α2 − αβ)eαx1 ≥ λ.

Thus

Lv = L0v + cv ≤ L0v (since c ≤ 0, v ≥ 0 in Ω)

= −L0(eαx1) sup
|f−|
λ

(by linearity of L)

≤ −λ sup
|f−|
λ

(since L0(eαx1) ≥ λ in Ω)

≤ f
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in Ω. By the comparison principle, u ≤ v on Ω. In particular,

sup
Ω
u ≤ sup

Ω
v = sup

∂Ω
u+ + (eαd − 1) sup

|f−|
λ
.

Replacing u with −u completes the proof in the case that Lu = f in Ω.

Corollary 1. Let Ω be a bounded domain in Rn. Suppose u ∈ C0(Ω) ∩ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu = f in Ω

for some functions aij, bi, c, and f on Ω. Suppose L is an elliptic operator and

β = sup
Ω

|bi|
λ

<∞.

Suppose that Ω is a small enough domain that

γ = (e(β+1)d − 1)
c+

λ
< 1,

where d = diam Ω and c = c+ − c− for c+ = max{c, 0} and c− = max{−c, 0}. Then

sup
Ω
u ≤ 1

1− γ

(
sup
∂Ω

u+ + C sup
Ω

|f−|
λ

)
for some constant C ∈ (0,∞) depending only on β and d.

Proof. Observe that
aijDiju+ biDiu− c−u ≥ f − c+u in Ω.

By Theorem 1,

sup
Ω
|u| ≤ sup

∂Ω
|u|+ C sup

Ω

|f |
λ

+ C sup
Ω

c+

λ
sup

Ω
|u|

≤ sup
∂Ω
|u|+ C sup

Ω

|f |
λ

+ γ sup
Ω
|u|.

Since γ < 1,

sup
Ω
|u| ≤ 1

1− γ

(
sup
∂Ω

u+ + C sup
Ω

|f−|
λ

)
.

Corollary 2. (Uniqueness of Solutions to the Dirichlet Problem on Small Domains) Let Ω be a
bounded open set in Rn. Consider the Dirichlet problem

Lu = aijDiju+ biDiu+ cu = f in Ω,

u = ϕ on ∂Ω,

for some functions aij, bi, c, and f on Ω and ϕ ∈ C0(∂Ω) such that L is an elliptic operator and

β = sup
Ω

|bi|
λ

<∞, sup
Ω

|c|
λ
<∞.
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Suppose that Ω is a small enough domain that

γ = (e(β+1)d − 1)
c+

λ
< 1,

where d = diam Ω and c = c+ − c− for c+ = max{c, 0} and c− = max{−c, 0}. Then there is at
most one solution u ∈ C0(Ω)∩C2(Ω) to the Dirichlet problem (i.e. there may be no solution or a
unique solution but there cannot be two or more solutions).

Proof. Suppose u1 and u2 are two solutions to the Dirichlet problem. Then

L(u1 − u2) = 0 in Ω,

u1 − u2 = 0 on ∂Ω.

By Corollary 1, u1 − u2 = 0 on Ω, i.e. u1 = u2 on Ω.

References: Gilbarg and Trudinger, Section 3.3.
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